Ergodicity properties of conditional Markov chains
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 3, pp. 547-557
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\zeta_t(\omega)=(\xi_t(\omega),\eta_t(\omega))$, $t=1,2,\dots,$ be a finite homogeneous Markov chain. If $\eta_1(\omega),\dots,\eta_n(\omega)$ are fixed, $\xi_t(\omega)$, $t=1,\dots,n,$ is a so called conditional Markov chain.
In this article, properties of trajectories of the conditional Markov chain and ergodicity properties of it are investigated.
			
            
            
            
          
        
      @article{TVP_1974_19_3_a6,
     author = {Z. I. Bezhaeva},
     title = {Ergodicity properties of conditional {Markov} chains},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {547--557},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a6/}
}
                      
                      
                    Z. I. Bezhaeva. Ergodicity properties of conditional Markov chains. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 3, pp. 547-557. http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a6/
