A limit theorem for the length of contours generated by crossings of the zero level by Gaussian fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 3, pp. 501-513
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that the sum of the lengths of contours arising from crossing of the zero level by a Gaussian field which are contained in $[0,T]\times[0,T]$ is asymptotically normal as $T\to\infty$.
@article{TVP_1974_19_3_a3,
author = {T. L. Malevich},
title = {A~limit theorem for the length of contours generated by crossings of the zero level by {Gaussian} fields},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {501--513},
year = {1974},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a3/}
}
TY - JOUR AU - T. L. Malevich TI - A limit theorem for the length of contours generated by crossings of the zero level by Gaussian fields JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1974 SP - 501 EP - 513 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a3/ LA - ru ID - TVP_1974_19_3_a3 ER -
T. L. Malevich. A limit theorem for the length of contours generated by crossings of the zero level by Gaussian fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 3, pp. 501-513. http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a3/