Estimations for quantiles in the central limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 3, pp. 626-632
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $F_n(x)$ be the distribution function of a normalized sum of $n$ independent indentically distributed random variables. In the paper, estimations are obtained for the uniform deviation of the quantile $F_n^{-1}(y)$ from $\Phi^{-1}(y)$ in an interval $(a,b)$ with $a$ and $b$ tending to 0 and 1 respectively as fast as $\exp\{-kn^\alpha\}$, where $k>0$, $0<\alpha<1$. For summands bounded by a constant $c$, explicit formulas are given showing how constants in the estimations obtained depend on the parameter $c/\sigma$, where $\sigma^2$ is the variance of each summand.
@article{TVP_1974_19_3_a16,
author = {M. V. Khatuntseva},
title = {Estimations for quantiles in the central limit theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {626--632},
year = {1974},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a16/}
}
M. V. Khatuntseva. Estimations for quantiles in the central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 3, pp. 626-632. http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a16/