Estimations for quantiles in the central limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 3, pp. 626-632 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $F_n(x)$ be the distribution function of a normalized sum of $n$ independent indentically distributed random variables. In the paper, estimations are obtained for the uniform deviation of the quantile $F_n^{-1}(y)$ from $\Phi^{-1}(y)$ in an interval $(a,b)$ with $a$ and $b$ tending to 0 and 1 respectively as fast as $\exp\{-kn^\alpha\}$, where $k>0$, $0<\alpha<1$. For summands bounded by a constant $c$, explicit formulas are given showing how constants in the estimations obtained depend on the parameter $c/\sigma$, where $\sigma^2$ is the variance of each summand.
@article{TVP_1974_19_3_a16,
     author = {M. V. Khatuntseva},
     title = {Estimations for quantiles in the central limit theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {626--632},
     year = {1974},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a16/}
}
TY  - JOUR
AU  - M. V. Khatuntseva
TI  - Estimations for quantiles in the central limit theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 626
EP  - 632
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a16/
LA  - ru
ID  - TVP_1974_19_3_a16
ER  - 
%0 Journal Article
%A M. V. Khatuntseva
%T Estimations for quantiles in the central limit theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 626-632
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a16/
%G ru
%F TVP_1974_19_3_a16
M. V. Khatuntseva. Estimations for quantiles in the central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 3, pp. 626-632. http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a16/