A necessary condition for moments of the number of zeros of a differentiable Guassian stationary process to le inite
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 3, pp. 596-603
Cet article a éte moissonné depuis la source Math-Net.Ru
A necessary condition is given (theorem 1) for moments $N_m$ of the number of zeros of a differentiable Gaussian stationary process to be finite. Theorem 2 answers to the question whether moment $N_m<\infty$ or $=\infty$ by comparison of the correlation function ot $\xi_t$ with that of another process for which this problem has been already solved.
@article{TVP_1974_19_3_a11,
author = {R. N. Miroshin},
title = {A necessary condition for moments of the number of zeros of a differentiable {Guassian} stationary process to le inite},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {596--603},
year = {1974},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a11/}
}
TY - JOUR AU - R. N. Miroshin TI - A necessary condition for moments of the number of zeros of a differentiable Guassian stationary process to le inite JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1974 SP - 596 EP - 603 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a11/ LA - ru ID - TVP_1974_19_3_a11 ER -
%0 Journal Article %A R. N. Miroshin %T A necessary condition for moments of the number of zeros of a differentiable Guassian stationary process to le inite %J Teoriâ veroâtnostej i ee primeneniâ %D 1974 %P 596-603 %V 19 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a11/ %G ru %F TVP_1974_19_3_a11
R. N. Miroshin. A necessary condition for moments of the number of zeros of a differentiable Guassian stationary process to le inite. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 3, pp. 596-603. http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a11/