Branching diffusion processes in a~bounded domain with absorbing boundary
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 3, pp. 589-595

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mu_{xn}(U)$, $U\subset\mathscr X$, be the number of particles of the $n$-th generation in the set $U$ provided initially there was a single particle which was located at the point $x$. It is proved that, for a subcritical branching process, finite-dimensional distributions of the conditional random measure $\mu_{xn}$, $\mu_{xn}(\mathscr X)>0$, converge to finite-dimensional distributions of a fixed random measure $\mu$ independent of the initial distribution. An equation for the generating functional of this measure is found, as well as a sufficient condition for its expectation to be finite. For a critical branching process the limit distribution is given explicitly.
@article{TVP_1974_19_3_a10,
     author = {P. I. Maister},
     title = {Branching diffusion processes in a~bounded domain with absorbing boundary},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {589--595},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a10/}
}
TY  - JOUR
AU  - P. I. Maister
TI  - Branching diffusion processes in a~bounded domain with absorbing boundary
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 589
EP  - 595
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a10/
LA  - ru
ID  - TVP_1974_19_3_a10
ER  - 
%0 Journal Article
%A P. I. Maister
%T Branching diffusion processes in a~bounded domain with absorbing boundary
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 589-595
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a10/
%G ru
%F TVP_1974_19_3_a10
P. I. Maister. Branching diffusion processes in a~bounded domain with absorbing boundary. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 3, pp. 589-595. http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a10/