On limit distributions of a~statistic
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 367-374
Voir la notice de l'article provenant de la source Math-Net.Ru
The random variables
$$
\eta_n(t)=\sum_{i\le nt}a_ib_{x_i},\quad0\le t\le1,
$$
are considered, where $a_1,\dots,a_n$ and $b_1,\dots,b_n$ are numerical sequences and
$$
X=
\begin{pmatrix}
12\hdots
\\
x_1\hdots
\end{pmatrix}
$$
is a random permutation either from the class of all permutations or from the class of permutations with one cycle only.
Conditions are obtained for finite dimensional distributions of $\eta_n(t)$ to converge to those of the limit processes.
@article{TVP_1974_19_2_a9,
author = {V. F. Kolchin and V. P. Chistyakov},
title = {On limit distributions of a~statistic},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {367--374},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a9/}
}
V. F. Kolchin; V. P. Chistyakov. On limit distributions of a~statistic. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 367-374. http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a9/