On limit distributions of a statistic
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 367-374
Cet article a éte moissonné depuis la source Math-Net.Ru
The random variables $$ \eta_n(t)=\sum_{i\le nt}a_ib_{x_i},\quad0\le t\le1, $$ are considered, where $a_1,\dots,a_n$ and $b_1,\dots,b_n$ are numerical sequences and $$ X= \begin{pmatrix} 1&2&\hdots&n \\ x_1&x_2&\hdots&x_n \end{pmatrix} $$ is a random permutation either from the class of all permutations or from the class of permutations with one cycle only. Conditions are obtained for finite dimensional distributions of $\eta_n(t)$ to converge to those of the limit processes.
@article{TVP_1974_19_2_a9,
author = {V. F. Kolchin and V. P. Chistyakov},
title = {On limit distributions of a~statistic},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {367--374},
year = {1974},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a9/}
}
V. F. Kolchin; V. P. Chistyakov. On limit distributions of a statistic. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 367-374. http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a9/