On infinitely divisible distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 308-318
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $F$ be a $\sigma$-finite measure with the property (3), § 2, in a separable Banach space $\mathscr B$. $F$ belongs to $\mathfrak G$ iff the infinitely divisible distributions in $\mathscr B$ with the ch.f.
$$
\exp\biggl\{2\int_{|x|\ge\varepsilon}\cos(\langle t,x\rangle-1)F(dx)\biggr\}
$$
have a weak limit $e(\widetilde F)$ as $\varepsilon\to0$.
If $F$ of class $\mathfrak G$ is concentrated in a bounded set,
$$
\int\exp(\gamma|x|)e(F)(dx)
$$
is finite for some $\gamma>0$; $\int\langle t,x\rangle^2F(dx)\le C|t|^2$.
For $\mathscr B=l_p$, $p\ge2$, this leads to a characterization of $\mathfrak G$ (Theorem 3).
In the general case, condition
$$
\int_{|x|\le1}|x|F(dx)
$$
is shown to imply $F\in\mathfrak G$.
@article{TVP_1974_19_2_a5,
author = {V. V. Yurinskii},
title = {On infinitely divisible distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {308--318},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a5/}
}
V. V. Yurinskii. On infinitely divisible distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 308-318. http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a5/