On infinitely divisible distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 308-318
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $F$ be a $\sigma$-finite measure with the property (3), § 2, in a separable Banach space $\mathscr B$. $F$ belongs to $\mathfrak G$ iff the infinitely divisible distributions in $\mathscr B$ with the ch.f. $$ \exp\biggl\{2\int_{|x|\ge\varepsilon}\cos(\langle t,x\rangle-1)F(dx)\biggr\} $$ have a weak limit $e(\widetilde F)$ as $\varepsilon\to0$. If $F$ of class $\mathfrak G$ is concentrated in a bounded set, $$ \int\exp(\gamma|x|)e(F)(dx) $$ is finite for some $\gamma>0$; $\int\langle t,x\rangle^2F(dx)\le C|t|^2$. For $\mathscr B=l_p$, $p\ge2$, this leads to a characterization of $\mathfrak G$ (Theorem 3). In the general case, condition $$ \int_{|x|\le1}|x|F(dx) $$ is shown to imply $F\in\mathfrak G$.
@article{TVP_1974_19_2_a5,
author = {V. V. Yurinskii},
title = {On infinitely divisible distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {308--318},
year = {1974},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a5/}
}
V. V. Yurinskii. On infinitely divisible distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 308-318. http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a5/