On infinitely divisible distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 308-318

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F$ be a $\sigma$-finite measure with the property (3), § 2, in a separable Banach space $\mathscr B$. $F$ belongs to $\mathfrak G$ iff the infinitely divisible distributions in $\mathscr B$ with the ch.f. $$ \exp\biggl\{2\int_{|x|\ge\varepsilon}\cos(\langle t,x\rangle-1)F(dx)\biggr\} $$ have a weak limit $e(\widetilde F)$ as $\varepsilon\to0$. If $F$ of class $\mathfrak G$ is concentrated in a bounded set, $$ \int\exp(\gamma|x|)e(F)(dx) $$ is finite for some $\gamma>0$; $\int\langle t,x\rangle^2F(dx)\le C|t|^2$. For $\mathscr B=l_p$, $p\ge2$, this leads to a characterization of $\mathfrak G$ (Theorem 3). In the general case, condition $$ \int_{|x|\le1}|x|F(dx) $$ is shown to imply $F\in\mathfrak G$.
@article{TVP_1974_19_2_a5,
     author = {V. V. Yurinskii},
     title = {On infinitely divisible distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {308--318},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a5/}
}
TY  - JOUR
AU  - V. V. Yurinskii
TI  - On infinitely divisible distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 308
EP  - 318
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a5/
LA  - ru
ID  - TVP_1974_19_2_a5
ER  - 
%0 Journal Article
%A V. V. Yurinskii
%T On infinitely divisible distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 308-318
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a5/
%G ru
%F TVP_1974_19_2_a5
V. V. Yurinskii. On infinitely divisible distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 308-318. http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a5/