On the distribution of the maximum cumulative sum of independent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 257-277

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1,\dots,X_n$ be independent random variables with $\mathbf EX_k=0$ and $\mathbf E|x_k|^3=\gamma_{3k}\infty$. Let $$ S_0=0,\quad S_k=\sum_{i=1}^kX_i\quad(k=1,\dots,n),\quad\overline{S_n}=\max\limits_{0\le k\le n}S_k,\quad B_k^2=\sum_{i=1}^k\mathbf DX_i. $$ In the paper, some bounds for $$ \Delta_n(x)=\mathbf P\{\overline{S_n}\}-\sqrt{\frac2\pi}\int_0^{x/B_n}e^{-y^2/2}\,dy\quad(x\ge0) $$ are obtained. The main result is the following Theorem. {\em Let $x\ge0$. Then $$ |\Delta_n(x)|\le C\sum_{k=1}^n\frac{x+\rho_k}{x+\rho_k+B_k}\cdot\frac{B_n\gamma_{3k}}{(B_k^2+x^2)(B_n+x)B_{k-1,n}} $$ where $\rho_k=\max\limits_{i\le k}\gamma_{3i}/\mathbf DX_i$ and} $B_{k-1,n}=(\sum_{i=k}^n\mathbf DX_i)^{1/2}$.
@article{TVP_1974_19_2_a2,
     author = {T. V. Arak},
     title = {On the distribution of the maximum cumulative sum of independent random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {257--277},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a2/}
}
TY  - JOUR
AU  - T. V. Arak
TI  - On the distribution of the maximum cumulative sum of independent random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 257
EP  - 277
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a2/
LA  - ru
ID  - TVP_1974_19_2_a2
ER  - 
%0 Journal Article
%A T. V. Arak
%T On the distribution of the maximum cumulative sum of independent random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 257-277
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a2/
%G ru
%F TVP_1974_19_2_a2
T. V. Arak. On the distribution of the maximum cumulative sum of independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 257-277. http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a2/