On the distribution of the maximum cumulative sum of independent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 257-277
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X_1,\dots,X_n$ be independent random variables with $\mathbf EX_k=0$ and $\mathbf E|x_k|^3=\gamma_{3k}\infty$. Let
$$
S_0=0,\quad S_k=\sum_{i=1}^kX_i\quad(k=1,\dots,n),\quad\overline{S_n}=\max\limits_{0\le k\le n}S_k,\quad B_k^2=\sum_{i=1}^k\mathbf DX_i.
$$
In the paper, some bounds for
$$
\Delta_n(x)=\mathbf P\{\overline{S_n}\}-\sqrt{\frac2\pi}\int_0^{x/B_n}e^{-y^2/2}\,dy\quad(x\ge0)
$$
are obtained. The main result is the following
Theorem. {\em Let $x\ge0$. Then
$$
|\Delta_n(x)|\le C\sum_{k=1}^n\frac{x+\rho_k}{x+\rho_k+B_k}\cdot\frac{B_n\gamma_{3k}}{(B_k^2+x^2)(B_n+x)B_{k-1,n}}
$$
where $\rho_k=\max\limits_{i\le k}\gamma_{3i}/\mathbf DX_i$ and} $B_{k-1,n}=(\sum_{i=k}^n\mathbf DX_i)^{1/2}$.
@article{TVP_1974_19_2_a2,
author = {T. V. Arak},
title = {On the distribution of the maximum cumulative sum of independent random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {257--277},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a2/}
}
T. V. Arak. On the distribution of the maximum cumulative sum of independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 257-277. http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a2/