On the integral mean squared error of some non-parametric estimates of the probability density
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 131-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that in estimating the density $p(x)$ by means of the statistics (1) the sequence $\tau_n=\tau_n^0$ is optimal in the sense of the minimum integral mean squared error $U_n^2(\tau_n)$. An estimate $\widehat\tau_n=\widehat\tau_n(X_1, X_2,\dots,X_n)$ for $\tau_n^0$ is constructed and a theorem is proved that gives conditions under which $U_n^2(\widehat\tau_n)\sim U_n^2(\tau_n^0)$.
@article{TVP_1974_19_1_a9,
     author = {\`E. A. Nadaraya},
     title = {On the integral mean squared error of some non-parametric estimates of the probability density},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {131--139},
     year = {1974},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a9/}
}
TY  - JOUR
AU  - È. A. Nadaraya
TI  - On the integral mean squared error of some non-parametric estimates of the probability density
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 131
EP  - 139
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a9/
LA  - ru
ID  - TVP_1974_19_1_a9
ER  - 
%0 Journal Article
%A È. A. Nadaraya
%T On the integral mean squared error of some non-parametric estimates of the probability density
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 131-139
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a9/
%G ru
%F TVP_1974_19_1_a9
È. A. Nadaraya. On the integral mean squared error of some non-parametric estimates of the probability density. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 131-139. http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a9/