Exponential bounds for smooth fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 230-235

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorem of Section 3 gives exponentially decreasing bounds on sup norm large deviation probabilities for sums of independent random fields over the $k$-dimensional unit cube. Summands are supposed to have sufficiently smooth sample functions (4), (7) and satisfy Cramer's type conditions (5), (6). Proofs are based on Sobolev's imbedding theorems.
@article{TVP_1974_19_1_a27,
     author = {V. V. Yurinskii},
     title = {Exponential bounds for smooth fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {230--235},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a27/}
}
TY  - JOUR
AU  - V. V. Yurinskii
TI  - Exponential bounds for smooth fields
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 230
EP  - 235
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a27/
LA  - ru
ID  - TVP_1974_19_1_a27
ER  - 
%0 Journal Article
%A V. V. Yurinskii
%T Exponential bounds for smooth fields
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 230-235
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a27/
%G ru
%F TVP_1974_19_1_a27
V. V. Yurinskii. Exponential bounds for smooth fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 230-235. http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a27/