The relation between Mann--Whitney's statistic and Kendall's correlation coefficient~$\tau$
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 211-213

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that Kendall's correlation coefficient may be expressed as follows: $$ \tau=\frac{4\sum_{s=1}^k\sum_{f=1}^{s-1}U_{sf}-N^2+\sum_{s=1}^kn_{s\cdot}^2}{\sqrt{(N^2-\sum n_{s\cdot}^2)(N^2-\sum n_{\cdot t}^2)}} $$ where $N$ is the sample size $U_sf$ is Mann–Whitney's statistic for the conditional distributions of $Y$ given $X_s$ and $X_f\cdot$. For $k=l$, $n_{s\cdot}=n_{\cdot t}=N/k$ for all $s$ and $t$, put $\widehat p_{st}=U_{st}/n_{s\cdot}n_{f\cdot}$; then $$ \tau=2\Biggl[\frac{\sum_{s=1}^k\sum_{t=1}^{s-1}\widehat p_{st}}{1/2k(k-1)}-\frac12\Biggr]. $$ The first term in the brackets is the mean value of the normalized Mann–Whitney's statistic over all paired comparisons of conditional distributions of $Y$.
@article{TVP_1974_19_1_a22,
     author = {M. G. Gel'berg},
     title = {The relation between {Mann--Whitney's} statistic and {Kendall's} correlation coefficient~$\tau$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {211--213},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a22/}
}
TY  - JOUR
AU  - M. G. Gel'berg
TI  - The relation between Mann--Whitney's statistic and Kendall's correlation coefficient~$\tau$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 211
EP  - 213
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a22/
LA  - ru
ID  - TVP_1974_19_1_a22
ER  - 
%0 Journal Article
%A M. G. Gel'berg
%T The relation between Mann--Whitney's statistic and Kendall's correlation coefficient~$\tau$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 211-213
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a22/
%G ru
%F TVP_1974_19_1_a22
M. G. Gel'berg. The relation between Mann--Whitney's statistic and Kendall's correlation coefficient~$\tau$. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 211-213. http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a22/