On conditions for the zero regression of one linear statistic with respect to another
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 206-210

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1$, $X_2$ be independent identically distributed random vectors in $R^2$; $A_1$$A_2$, $B_1$$B_2$ be non-singular $(2\times2)$ matrices, $Y_1=A_1X_1+A_2X_2$, $Y_2=B_1X_1+B_2X_2$. The condition $\mathbf E(Y_1\mid Y_2)=0$ is studied.
@article{TVP_1974_19_1_a21,
     author = {L. B. Klebanov},
     title = {On conditions for the zero regression of one linear statistic with respect to another},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {206--210},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a21/}
}
TY  - JOUR
AU  - L. B. Klebanov
TI  - On conditions for the zero regression of one linear statistic with respect to another
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 206
EP  - 210
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a21/
LA  - ru
ID  - TVP_1974_19_1_a21
ER  - 
%0 Journal Article
%A L. B. Klebanov
%T On conditions for the zero regression of one linear statistic with respect to another
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 206-210
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a21/
%G ru
%F TVP_1974_19_1_a21
L. B. Klebanov. On conditions for the zero regression of one linear statistic with respect to another. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 206-210. http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a21/