On conditions for the zero regression of one linear statistic with respect to another
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 206-210
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_1$, $X_2$ be independent identically distributed random vectors in $R^2$; $A_1$, $A_2$, $B_1$, $B_2$ be non-singular $(2\times2)$ matrices, $Y_1=A_1X_1+A_2X_2$, $Y_2=B_1X_1+B_2X_2$. The condition $\mathbf E(Y_1\mid Y_2)=0$ is studied.
			
            
            
            
          
        
      @article{TVP_1974_19_1_a21,
     author = {L. B. Klebanov},
     title = {On conditions for the zero regression of one linear statistic with respect to another},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {206--210},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a21/}
}
                      
                      
                    TY - JOUR AU - L. B. Klebanov TI - On conditions for the zero regression of one linear statistic with respect to another JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1974 SP - 206 EP - 210 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a21/ LA - ru ID - TVP_1974_19_1_a21 ER -
L. B. Klebanov. On conditions for the zero regression of one linear statistic with respect to another. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 206-210. http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a21/
