On conditions for the zero regression of one linear statistic with respect to another
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 206-210
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X_1$, $X_2$ be independent identically distributed random vectors in $R^2$; $A_1$, $A_2$, $B_1$, $B_2$ be non-singular $(2\times2)$ matrices, $Y_1=A_1X_1+A_2X_2$, $Y_2=B_1X_1+B_2X_2$. The condition $\mathbf E(Y_1\mid Y_2)=0$ is studied.
@article{TVP_1974_19_1_a21,
author = {L. B. Klebanov},
title = {On conditions for the zero regression of one linear statistic with respect to another},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {206--210},
year = {1974},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a21/}
}
L. B. Klebanov. On conditions for the zero regression of one linear statistic with respect to another. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 206-210. http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a21/