Random partitions of sets
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 187-194

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak A_m$ be a set of $m$ elements and each its partition into subsets be equiprobable. Let $\xi_l$ be the number of subsets of power $l$ in the random partition. Then the vector $$ ((\xi_{i_1}-\lambda_{i_1})/\sqrt{\lambda_{i_1}},\dots,(\xi_{i_k}-\lambda_{i_k})/\sqrt{\lambda_{i_k}}), $$ where $\lambda_l=r^l/l!$, $r$ being the unique real root of the equation $re^r=m$, is shown to be asymptotically normal as $m\to\infty$ with unit variances and independent components. The limit distributions of $\mu_m$ and $\nu_m$ are studied, $\mu_m$ $(\nu_m)$ being the greatest (least) power in the random partition of $\mathfrak A_m$. The first is shown to be close to a double exponential distribution in a neighbourhood of point $er$, the second to be the degenerate distribution with the unit mass at point 1.
@article{TVP_1974_19_1_a18,
     author = {V. N. Sachkov},
     title = {Random partitions of sets},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {187--194},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a18/}
}
TY  - JOUR
AU  - V. N. Sachkov
TI  - Random partitions of sets
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 187
EP  - 194
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a18/
LA  - ru
ID  - TVP_1974_19_1_a18
ER  - 
%0 Journal Article
%A V. N. Sachkov
%T Random partitions of sets
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 187-194
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a18/
%G ru
%F TVP_1974_19_1_a18
V. N. Sachkov. Random partitions of sets. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 187-194. http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a18/