Random partitions of sets
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 187-194
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak A_m$ be a set of $m$ elements and each its partition into subsets be equiprobable. Let $\xi_l$ be the number of subsets of power $l$ in the random partition. Then the vector
$$
((\xi_{i_1}-\lambda_{i_1})/\sqrt{\lambda_{i_1}},\dots,(\xi_{i_k}-\lambda_{i_k})/\sqrt{\lambda_{i_k}}),
$$
where $\lambda_l=r^l/l!$, $r$ being the unique real root of the equation $re^r=m$, is shown to be asymptotically normal as $m\to\infty$ with unit variances and independent components. The limit distributions of $\mu_m$ and $\nu_m$ are studied, $\mu_m$ $(\nu_m)$ being the greatest (least) power in the random partition of $\mathfrak A_m$. The first is shown to be close to a double exponential distribution in a neighbourhood of point $er$, the second to be the degenerate distribution with the unit mass at point 1.
@article{TVP_1974_19_1_a18,
author = {V. N. Sachkov},
title = {Random partitions of sets},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {187--194},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a18/}
}
V. N. Sachkov. Random partitions of sets. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 187-194. http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a18/