On the existence and uniqueness of a~solution of a~stochastic differential equations with martingale differential
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 169-173
Voir la notice de l'article provenant de la source Math-Net.Ru
Under some conditions, the existence and uniqueness of a solution of the equation
$$
d\xi(t)=a(t,\xi(t))dt+\sum_{k=1}^rb_k(t,\xi(t))d\zeta_k(t)+\int_{R^m}f(t,\xi(t),u)\widetilde\nu(dt,du)
$$
are proved, where $\zeta_k(t)$, $k=\overline{1,r}$, are continuous martingales, $\widetilde\nu(t,A)=\nu(t,A)-t\Pi(A)$ and $\nu(t,A)$ is a Poisson measure, $\mathbf M\nu(t,A)=t\Pi(A)$.
@article{TVP_1974_19_1_a15,
author = {G. L. Kulini\v{c}},
title = {On the existence and uniqueness of a~solution of a~stochastic differential equations with martingale differential},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {169--173},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a15/}
}
TY - JOUR AU - G. L. Kulinič TI - On the existence and uniqueness of a~solution of a~stochastic differential equations with martingale differential JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1974 SP - 169 EP - 173 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a15/ LA - ru ID - TVP_1974_19_1_a15 ER -
%0 Journal Article %A G. L. Kulinič %T On the existence and uniqueness of a~solution of a~stochastic differential equations with martingale differential %J Teoriâ veroâtnostej i ee primeneniâ %D 1974 %P 169-173 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a15/ %G ru %F TVP_1974_19_1_a15
G. L. Kulinič. On the existence and uniqueness of a~solution of a~stochastic differential equations with martingale differential. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 169-173. http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a15/