On the distribution of the first jump over a high barrier for a generalized Poisson process with drift
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 159-163
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\xi(t)$ be a process with independent increments and finite number of jumps. Define $\eta_x=\inf\{t\colon\xi(t)\ge x\}$ and $\chi_x=\xi(\eta_x)-x(x>0)$. For the limit distribution $$ \lim_{x\to\infty}\mathbf P\{\chi_x\le x\} $$ explicit expresions are given.
@article{TVP_1974_19_1_a13,
author = {A. I. Fokht},
title = {On the distribution of the first jump over a~high barrier for a~generalized {Poisson} process with drift},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {159--163},
year = {1974},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a13/}
}
TY - JOUR AU - A. I. Fokht TI - On the distribution of the first jump over a high barrier for a generalized Poisson process with drift JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1974 SP - 159 EP - 163 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a13/ LA - ru ID - TVP_1974_19_1_a13 ER -
A. I. Fokht. On the distribution of the first jump over a high barrier for a generalized Poisson process with drift. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 159-163. http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a13/