On the distribution of the first jump over a~high barrier for a~generalized Poisson process with drift
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 159-163

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi(t)$ be a process with independent increments and finite number of jumps. Define $\eta_x=\inf\{t\colon\xi(t)\ge x\}$ and $\chi_x=\xi(\eta_x)-x(x>0)$. For the limit distribution $$ \lim_{x\to\infty}\mathbf P\{\chi_x\le x\} $$ explicit expresions are given.
@article{TVP_1974_19_1_a13,
     author = {A. I. Fokht},
     title = {On the distribution of the first jump over a~high barrier for a~generalized {Poisson} process with drift},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {159--163},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a13/}
}
TY  - JOUR
AU  - A. I. Fokht
TI  - On the distribution of the first jump over a~high barrier for a~generalized Poisson process with drift
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 159
EP  - 163
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a13/
LA  - ru
ID  - TVP_1974_19_1_a13
ER  - 
%0 Journal Article
%A A. I. Fokht
%T On the distribution of the first jump over a~high barrier for a~generalized Poisson process with drift
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 159-163
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a13/
%G ru
%F TVP_1974_19_1_a13
A. I. Fokht. On the distribution of the first jump over a~high barrier for a~generalized Poisson process with drift. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 159-163. http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a13/