Controlled branching processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 15-25
Voir la notice de l'article provenant de la source Math-Net.Ru
We define the controlled branching process $\mu(t)$ as a process in which the number of particles $\mu(t+1)$ in the $(t+1)$-th generation equals the sum:
$$
\xi_1(t)+\dots+\xi_{\varphi(\mu(t))}(t),
$$
where $\xi_i(t)$, $i=1,2,\dots$, $t=1,2,\dots$, are independent identically distributed integer-valued random variables independent of $\mu(t)$, $\varphi(n)$ is a non-negative integer-valued function.
We investigate asymptotic properties of such processes when (1) $\varphi(n)\sim\alpha n$ or (2) $\varphi(n)\sim cn^\beta$ as $n\to\infty$. Let $A=\mathbf M\xi_i(t)$ in case (1) and $\mathbf P\{\xi_i(t)> x\}\sim cx^{-\alpha}$ as $x\to\infty$ in case (2). We prove that the process is subcritical if $\alpha A1$ in case (1) and if $\beta\alpha$ in case (2), and is supercritical if $\alpha A>1$ in case (1) and if $\beta>\alpha$ in case (2).
@article{TVP_1974_19_1_a1,
author = {B. A. Sevast'yanov and A. M. Zubkov},
title = {Controlled branching processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {15--25},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a1/}
}
B. A. Sevast'yanov; A. M. Zubkov. Controlled branching processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 15-25. http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a1/