Controlled branching processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 15-25

Voir la notice de l'article provenant de la source Math-Net.Ru

We define the controlled branching process $\mu(t)$ as a process in which the number of particles $\mu(t+1)$ in the $(t+1)$-th generation equals the sum: $$ \xi_1(t)+\dots+\xi_{\varphi(\mu(t))}(t), $$ where $\xi_i(t)$, $i=1,2,\dots$, $t=1,2,\dots$, are independent identically distributed integer-valued random variables independent of $\mu(t)$, $\varphi(n)$ is a non-negative integer-valued function. We investigate asymptotic properties of such processes when (1) $\varphi(n)\sim\alpha n$ or (2) $\varphi(n)\sim cn^\beta$ as $n\to\infty$. Let $A=\mathbf M\xi_i(t)$ in case (1) and $\mathbf P\{\xi_i(t)> x\}\sim cx^{-\alpha}$ as $x\to\infty$ in case (2). We prove that the process is subcritical if $\alpha A1$ in case (1) and if $\beta\alpha$ in case (2), and is supercritical if $\alpha A>1$ in case (1) and if $\beta>\alpha$ in case (2).
@article{TVP_1974_19_1_a1,
     author = {B. A. Sevast'yanov and A. M. Zubkov},
     title = {Controlled branching processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {15--25},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a1/}
}
TY  - JOUR
AU  - B. A. Sevast'yanov
AU  - A. M. Zubkov
TI  - Controlled branching processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 15
EP  - 25
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a1/
LA  - ru
ID  - TVP_1974_19_1_a1
ER  - 
%0 Journal Article
%A B. A. Sevast'yanov
%A A. M. Zubkov
%T Controlled branching processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 15-25
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a1/
%G ru
%F TVP_1974_19_1_a1
B. A. Sevast'yanov; A. M. Zubkov. Controlled branching processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 1, pp. 15-25. http://geodesic.mathdoc.fr/item/TVP_1974_19_1_a1/