Estimation of the mean of a Wiener process observed on an infinite interval
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 804-808
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\omega(t)$ be a Wiener process, $\mathbf{M}\omega(t)=0$, $\mathbf{D}\omega(t)=t$, $\varphi(t)$, $t\in[0,\infty]$ be a function form a set $M\subset C_{[0,\infty)}$ and $x(t)=\omega(t)+\varphi(t)$ be the observation process.
In the paper, conditions on the set $M$ are given under which there exist a consistent estimate of $\varphi$.
@article{TVP_1973_18_4_a8,
author = {I. Sh. Ibramhalilov and A. V. Skorokhod},
title = {Estimation of the mean of a {Wiener} process observed on an infinite interval},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {804--808},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a8/}
}
TY - JOUR AU - I. Sh. Ibramhalilov AU - A. V. Skorokhod TI - Estimation of the mean of a Wiener process observed on an infinite interval JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1973 SP - 804 EP - 808 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a8/ LA - ru ID - TVP_1973_18_4_a8 ER -
I. Sh. Ibramhalilov; A. V. Skorokhod. Estimation of the mean of a Wiener process observed on an infinite interval. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 804-808. http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a8/