Estimation of the mean of a Wiener process observed on an infinite interval
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 804-808

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\omega(t)$ be a Wiener process, $\mathbf{M}\omega(t)=0$, $\mathbf{D}\omega(t)=t$, $\varphi(t)$, $t\in[0,\infty]$ be a function form a set $M\subset C_{[0,\infty)}$ and $x(t)=\omega(t)+\varphi(t)$ be the observation process. In the paper, conditions on the set $M$ are given under which there exist a consistent estimate of $\varphi$.
@article{TVP_1973_18_4_a8,
     author = {I. Sh. Ibramhalilov and A. V. Skorokhod},
     title = {Estimation of the mean of a {Wiener} process observed on an infinite interval},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {804--808},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a8/}
}
TY  - JOUR
AU  - I. Sh. Ibramhalilov
AU  - A. V. Skorokhod
TI  - Estimation of the mean of a Wiener process observed on an infinite interval
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1973
SP  - 804
EP  - 808
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a8/
LA  - ru
ID  - TVP_1973_18_4_a8
ER  - 
%0 Journal Article
%A I. Sh. Ibramhalilov
%A A. V. Skorokhod
%T Estimation of the mean of a Wiener process observed on an infinite interval
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1973
%P 804-808
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a8/
%G ru
%F TVP_1973_18_4_a8
I. Sh. Ibramhalilov; A. V. Skorokhod. Estimation of the mean of a Wiener process observed on an infinite interval. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 804-808. http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a8/