Asymptotic properties of the degeneration probability for semi-Markov multiplication processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 778-789

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, processes $Y(t), t\geq 0$, are considered defined as follows: 1) $Y(0)-x$; 2) sample paths of $Y(t)$ are right continuous and $Y'(t)=-1$ everywhere except at points $t_i=\sum_{k=1}^i \tau_k$, where $$ Y(t_n+0)=\gamma_n Y(t_n-0), $$ $\{\tau_i\}_1^{\infty}$ and $\{\gamma\}_1^{\infty}$ being independent sequences of independent positive random variables. Let $\zeta=\inf\{t: Y(t)\leq 0\}$. The probability $$ f(x)=\mathbf{P}(\zeta\infty|Y(0)=x) $$ is called the degeneration probability. Under wide conditions upon $\{\tau_i\}$ and $\{\gamma_i\}$, asymptotic behavior of $f(x)$ as $x\to 0$ or $x\to\infty$ is studied.
@article{TVP_1973_18_4_a6,
     author = {G. Sh. Lev},
     title = {Asymptotic properties of the degeneration probability for {semi-Markov} multiplication processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {778--789},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a6/}
}
TY  - JOUR
AU  - G. Sh. Lev
TI  - Asymptotic properties of the degeneration probability for semi-Markov multiplication processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1973
SP  - 778
EP  - 789
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a6/
LA  - ru
ID  - TVP_1973_18_4_a6
ER  - 
%0 Journal Article
%A G. Sh. Lev
%T Asymptotic properties of the degeneration probability for semi-Markov multiplication processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1973
%P 778-789
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a6/
%G ru
%F TVP_1973_18_4_a6
G. Sh. Lev. Asymptotic properties of the degeneration probability for semi-Markov multiplication processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 778-789. http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a6/