Asymptotic properties of the degeneration probability for semi-Markov multiplication processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 778-789
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, processes $Y(t), t\geq 0$, are considered defined as follows:
1) $Y(0)-x$;
2) sample paths of $Y(t)$ are right continuous and $Y'(t)=-1$ everywhere except at points $t_i=\sum_{k=1}^i \tau_k$, where
$$
Y(t_n+0)=\gamma_n Y(t_n-0),
$$
$\{\tau_i\}_1^{\infty}$ and $\{\gamma\}_1^{\infty}$ being independent sequences of independent positive random variables.
Let $\zeta=\inf\{t: Y(t)\leq 0\}$. The probability
$$
f(x)=\mathbf{P}(\zeta\infty|Y(0)=x)
$$
is called the degeneration probability. Under wide conditions upon $\{\tau_i\}$ and $\{\gamma_i\}$, asymptotic behavior of $f(x)$ as $x\to 0$ or $x\to\infty$ is studied.
@article{TVP_1973_18_4_a6,
author = {G. Sh. Lev},
title = {Asymptotic properties of the degeneration probability for {semi-Markov} multiplication processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {778--789},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a6/}
}
TY - JOUR AU - G. Sh. Lev TI - Asymptotic properties of the degeneration probability for semi-Markov multiplication processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1973 SP - 778 EP - 789 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a6/ LA - ru ID - TVP_1973_18_4_a6 ER -
G. Sh. Lev. Asymptotic properties of the degeneration probability for semi-Markov multiplication processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 778-789. http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a6/