On a combinatorial limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 767-777

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the random variable $$ \eta_n=\sum_{i=1}^n a_i b_{x_i} $$ where $a_1,\dots,a_n, b_1,\dots,b_n$ are sequences of real numbers and $$ X=\begin{pmatrix} 1 2 \dots n\\ x_1 x_2 \dots x_n \end{pmatrix} $$ is a random permutation. Hajek found necessary and sufficient conditions for the asymptotic normality of $\eta_n$ when $X$ takes values in the set of all permutations of degree $n$ with equal probabilities. In this paper, we use a new approach to investigation of the asymptotic behaviour of $\eta_n$. This approach enables to prove the asymptotic normality of $\eta_n$ when $X$ takes values in the set of all permutations with a single cycle with equal probabilities. If $X$ takes values in the set of all permutations, our method gives conditions for the asymptotic normality of $\eta_n$ which are very close to Hajek's ones.
@article{TVP_1973_18_4_a5,
     author = {V. F. Kolchin and V. P. Chistyakov},
     title = {On a combinatorial limit theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {767--777},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a5/}
}
TY  - JOUR
AU  - V. F. Kolchin
AU  - V. P. Chistyakov
TI  - On a combinatorial limit theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1973
SP  - 767
EP  - 777
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a5/
LA  - ru
ID  - TVP_1973_18_4_a5
ER  - 
%0 Journal Article
%A V. F. Kolchin
%A V. P. Chistyakov
%T On a combinatorial limit theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1973
%P 767-777
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a5/
%G ru
%F TVP_1973_18_4_a5
V. F. Kolchin; V. P. Chistyakov. On a combinatorial limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 767-777. http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a5/