On a combinatorial limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 767-777
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the random variable $$ \eta_n=\sum_{i=1}^n a_i b_{x_i} $$ where $a_1,\dots,a_n, b_1,\dots,b_n$ are sequences of real numbers and $$ X=\begin{pmatrix} 1 & 2 & \dots & n\\ x_1 & x_2 & \dots & x_n \end{pmatrix} $$ is a random permutation. Hajek found necessary and sufficient conditions for the asymptotic normality of $\eta_n$ when $X$ takes values in the set of all permutations of degree $n$ with equal probabilities. In this paper, we use a new approach to investigation of the asymptotic behaviour of $\eta_n$. This approach enables to prove the asymptotic normality of $\eta_n$ when $X$ takes values in the set of all permutations with a single cycle with equal probabilities. If $X$ takes values in the set of all permutations, our method gives conditions for the asymptotic normality of $\eta_n$ which are very close to Hajek's ones.
@article{TVP_1973_18_4_a5,
author = {V. F. Kolchin and V. P. Chistyakov},
title = {On a combinatorial limit theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {767--777},
year = {1973},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a5/}
}
V. F. Kolchin; V. P. Chistyakov. On a combinatorial limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 767-777. http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a5/