On the rate of approach of the distributions of sums of independent random variables to accompanying distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 753-766

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{F}$ be the set of all distribution functions on $R,\mathcal{F}^*$ the subset of $\mathcal{F}$ corresponding to symmetric random variables, $F^n$ $n$-times convolution of $F$ with itself, $E_a$ the distribution function corresponding to the unit mass at $a$, $|F-G|=\sup_x |F(x)-G(x)|$ for $F,G\in\mathcal{F}$. It is proved that $$ \frac{c_0}{n^{1/3}}\sup_{F\in\mathcal{F}}\inf_a |(E_a F)^n-\exp\{n(E_a F-E_0)\}|\leq\frac{8}{n^{1/3}}, $$ $$ \frac{c_1}{\sqrt{n}}\sup_{F\in\mathcal{F}^*}|F^n-\exp\{n(F-E_0)\}|\sqrt{\frac{\log n}{n}}. $$ Here the first right-hand inequality is Kolmogorov's uniform limit theorem in Le Cam's version. We study also the closeness of distribution functions $\prod_i F_i E_{a_i}$ and $\exp\sum_i (F_iE_{a_i}-E_0)$ in the Kolmogorov–Smirnov and Lévy metrices.
@article{TVP_1973_18_4_a4,
     author = {I. A. Ibragimov and E. L. Presman},
     title = {On the rate of approach of the distributions of sums of independent random variables to accompanying distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {753--766},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a4/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - E. L. Presman
TI  - On the rate of approach of the distributions of sums of independent random variables to accompanying distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1973
SP  - 753
EP  - 766
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a4/
LA  - ru
ID  - TVP_1973_18_4_a4
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A E. L. Presman
%T On the rate of approach of the distributions of sums of independent random variables to accompanying distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1973
%P 753-766
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a4/
%G ru
%F TVP_1973_18_4_a4
I. A. Ibragimov; E. L. Presman. On the rate of approach of the distributions of sums of independent random variables to accompanying distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 753-766. http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a4/