Convergence of numerical characteristics of sums of independent random variables with vakues in a Hilbert space
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 734-752

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_{n1},\xi_{n2},\dots,\xi_{nm_n}$ be an array of row wise independent random variables with values in a Hilbert space $H$, and let $\varphi$ be a continuous function such that, for any elements $x,y\in H$, $$ \varphi(x+y)\leq \varphi(x)\varphi(y)\ \text{and}\ \inf_{x\in H} \varphi(x)>0. $$ Assume that $F_n$ (the probability distributions of $\xi_n=\xi_{n1}+\dots+\xi_{nm_n}$) converge weakly to a probability distribution $F$. We prove that $$ \lim_{n\to\infty}\int_H\varphi(x)F_n(dx)=\int_H\varphi(x)F(dx) $$ if and only if $$ \lim_{R\to\infty}\sup_n\sum_{j=1}^{m_n}\int_{||x||>R}\varphi(x)F_{nj}^{(s)}(dx)=0, $$ where $F_{nj}$ is the probability distributionof the random variable $\xi_{nj}, F_{nj}^{(s)}=F_{nj}*\overline{F}_{nj}$, $\overline{F}_{nj}(A)=F_{nj}(-A)$. Some results are derived from this theorem.
@article{TVP_1973_18_4_a3,
     author = {V. M. Kruglov},
     title = {Convergence of numerical characteristics of sums of independent random variables with vakues in a {Hilbert} space},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {734--752},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a3/}
}
TY  - JOUR
AU  - V. M. Kruglov
TI  - Convergence of numerical characteristics of sums of independent random variables with vakues in a Hilbert space
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1973
SP  - 734
EP  - 752
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a3/
LA  - ru
ID  - TVP_1973_18_4_a3
ER  - 
%0 Journal Article
%A V. M. Kruglov
%T Convergence of numerical characteristics of sums of independent random variables with vakues in a Hilbert space
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1973
%P 734-752
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a3/
%G ru
%F TVP_1973_18_4_a3
V. M. Kruglov. Convergence of numerical characteristics of sums of independent random variables with vakues in a Hilbert space. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 734-752. http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a3/