Convergence of numerical characteristics of sums of independent random variables with vakues in a Hilbert space
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 734-752
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\xi_{n1},\xi_{n2},\dots,\xi_{nm_n}$ be an array of row wise independent random variables with values in a Hilbert space $H$, and let $\varphi$ be a continuous function such that, for any elements $x,y\in H$, $$ \varphi(x+y)\leq \varphi(x)\varphi(y)\ \text{and}\ \inf_{x\in H} \varphi(x)>0. $$ Assume that $F_n$ (the probability distributions of $\xi_n=\xi_{n1}+\dots+\xi_{nm_n}$) converge weakly to a probability distribution $F$. We prove that $$ \lim_{n\to\infty}\int_H\varphi(x)F_n(dx)=\int_H\varphi(x)F(dx) $$ if and only if $$ \lim_{R\to\infty}\sup_n\sum_{j=1}^{m_n}\int_{||x||>R}\varphi(x)F_{nj}^{(s)}(dx)=0, $$ where $F_{nj}$ is the probability distributionof the random variable $\xi_{nj}, F_{nj}^{(s)}=F_{nj}*\overline{F}_{nj}$, $\overline{F}_{nj}(A)=F_{nj}(-A)$. Some results are derived from this theorem.
@article{TVP_1973_18_4_a3,
author = {V. M. Kruglov},
title = {Convergence of numerical characteristics of sums of independent random variables with vakues in a {Hilbert} space},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {734--752},
year = {1973},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a3/}
}
TY - JOUR AU - V. M. Kruglov TI - Convergence of numerical characteristics of sums of independent random variables with vakues in a Hilbert space JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1973 SP - 734 EP - 752 VL - 18 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a3/ LA - ru ID - TVP_1973_18_4_a3 ER -
V. M. Kruglov. Convergence of numerical characteristics of sums of independent random variables with vakues in a Hilbert space. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 734-752. http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a3/