On the precise value of the significance level for the truncated one-sided Kolmogorov test
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 827-830
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, the distribution function of $\Delta_n(\theta_1,\theta_2)$ defined by (1) is found (in (1), $S_n(x)$ denotes the empirical distribution function of a continuously distributed random variable obtained from $n$ independent observations).
@article{TVP_1973_18_4_a14,
author = {V. A. Epanechnikov},
title = {On the precise value of the significance level for the truncated one-sided {Kolmogorov} test},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {827--830},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a14/}
}
TY - JOUR AU - V. A. Epanechnikov TI - On the precise value of the significance level for the truncated one-sided Kolmogorov test JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1973 SP - 827 EP - 830 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a14/ LA - ru ID - TVP_1973_18_4_a14 ER -
V. A. Epanechnikov. On the precise value of the significance level for the truncated one-sided Kolmogorov test. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 827-830. http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a14/