On the precise value of the significance level for the truncated one-sided Kolmogorov test
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 827-830

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the distribution function of $\Delta_n(\theta_1,\theta_2)$ defined by (1) is found (in (1), $S_n(x)$ denotes the empirical distribution function of a continuously distributed random variable obtained from $n$ independent observations).
@article{TVP_1973_18_4_a14,
     author = {V. A. Epanechnikov},
     title = {On the precise value of the significance level for the truncated one-sided {Kolmogorov} test},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {827--830},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a14/}
}
TY  - JOUR
AU  - V. A. Epanechnikov
TI  - On the precise value of the significance level for the truncated one-sided Kolmogorov test
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1973
SP  - 827
EP  - 830
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a14/
LA  - ru
ID  - TVP_1973_18_4_a14
ER  - 
%0 Journal Article
%A V. A. Epanechnikov
%T On the precise value of the significance level for the truncated one-sided Kolmogorov test
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1973
%P 827-830
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a14/
%G ru
%F TVP_1973_18_4_a14
V. A. Epanechnikov. On the precise value of the significance level for the truncated one-sided Kolmogorov test. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 827-830. http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a14/