Probabilities of large deviations for randomly disturbed systems and stochastic stability
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 818-824

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $x_t^\varepsilon$ be a solution of the differential equation $x^\varepsilon=b(x^\varepsilon, \varepsilon\zeta), x_0=x\in R^\gamma$. Here $\zeta_t$ is a Gaussian stochastic process, $\varepsilon$ is a small parameter. Process $x_t^\varepsilon$ may be thought of as a result of small stochastic perturbations of the system $\dot{x}=b(x,0)$. Let $O$ be a stable equilibrium point of the system, $O\in D$ (a domain in $R^\gamma$) and $\tau_D^\varepsilon=\inf\{t: x_t^\varepsilon\notin D\}$. In the paper, the main term of $\ln\mathbf{P}\{\tau_D^\varepsilon$ as $\varepsilon\rightarrow 0$ is calculated. This term characterizes stability of point $O$ under perturbations $\varepsilon\zeta_t$ over time interval $[0, T]$.
@article{TVP_1973_18_4_a12,
     author = {M. I. Freidlin},
     title = {Probabilities of large deviations for randomly disturbed systems and stochastic stability},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {818--824},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a12/}
}
TY  - JOUR
AU  - M. I. Freidlin
TI  - Probabilities of large deviations for randomly disturbed systems and stochastic stability
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1973
SP  - 818
EP  - 824
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a12/
LA  - ru
ID  - TVP_1973_18_4_a12
ER  - 
%0 Journal Article
%A M. I. Freidlin
%T Probabilities of large deviations for randomly disturbed systems and stochastic stability
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1973
%P 818-824
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a12/
%G ru
%F TVP_1973_18_4_a12
M. I. Freidlin. Probabilities of large deviations for randomly disturbed systems and stochastic stability. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 4, pp. 818-824. http://geodesic.mathdoc.fr/item/TVP_1973_18_4_a12/