Some limit theorems for polynomials of second order
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 527-534
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_i$ be independent identically distributed random variables, $P_F(E)$ the probability of a set $E$, when the distribuion function of $X_i$ is $F$, class $\mathscr F_{0,1}=\{F\colon x\,dF(x)=0;\ \int x^2dF(x)=1\}$. Let $A_n=\{a_{ij}^{n}\}$ be a $(n\times n)$ symmetric matrix,
\begin{gather*}
b_n^2=\sum_i|a_{ii}^{(n)}|+\biggl[\sum_{i,j,i\ne j}(a_{ij}^{(n)})^2\biggr]^{1/2},
\\
e_{jn}^2=|a_{jj}^{(n)}|+\biggl[\sum_k{}^{(j)}(a_{kj}^{(n)})^2\biggr]\bigg/b_n^2\biggl(\sum_i{}^{(j)}a_i=\sum_ia_i-a_j\biggr).	 
\end{gather*} Here is a typical result of the paper.
Theorem {\em 1. Let $X^{(n)}=(X_1,\dots,X_n)$, $\zeta_n=(A_nX^{(n)},X^{(n)})b_n^2$. Then, if $\max\limits_je_{jn}^2=o(b_n^2)$, for any $F,G\in\mathscr F_{0,1}$
$$
\mathbf P_F(\zeta_n)-\mathbf P_G(\zeta_n)\underset{n\to\infty}\longrightarrow0
$$
for any $x$, possibly excluding $x$ from a set of zero Lebesgue measure}.
			
            
            
            
          
        
      @article{TVP_1973_18_3_a7,
     author = {V. I. Rotar'},
     title = {Some limit theorems for polynomials of second order},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {527--534},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a7/}
}
                      
                      
                    V. I. Rotar'. Some limit theorems for polynomials of second order. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 527-534. http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a7/
