On random fields of segments and random mosaics on the plane
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 515-526
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider random fields of segments on the plane and random mosaics (i.e. such random fields of segments that, with probability 1, partition the plane into convex bounded polygons). The random fields under consideration are assumed to be homogeneousand isotropic, i.e. the probability measure is invariant relative to Euclidean transformations of the plane. 
The main objects of the investigation are “stars” — collections of segments forming random fields which have a common point.
			
            
            
            
          
        
      @article{TVP_1973_18_3_a6,
     author = {R. V. Ambartzumian},
     title = {On random fields of segments and random mosaics on the plane},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {515--526},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a6/}
}
                      
                      
                    R. V. Ambartzumian. On random fields of segments and random mosaics on the plane. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 515-526. http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a6/
