On random fields of segments and random mosaics on the plane
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 515-526

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider random fields of segments on the plane and random mosaics (i.e. such random fields of segments that, with probability 1, partition the plane into convex bounded polygons). The random fields under consideration are assumed to be homogeneousand isotropic, i.e. the probability measure is invariant relative to Euclidean transformations of the plane. The main objects of the investigation are “stars” — collections of segments forming random fields which have a common point.
@article{TVP_1973_18_3_a6,
     author = {R. V. Ambartzumian},
     title = {On random fields of segments and random mosaics on the plane},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {515--526},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a6/}
}
TY  - JOUR
AU  - R. V. Ambartzumian
TI  - On random fields of segments and random mosaics on the plane
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1973
SP  - 515
EP  - 526
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a6/
LA  - ru
ID  - TVP_1973_18_3_a6
ER  - 
%0 Journal Article
%A R. V. Ambartzumian
%T On random fields of segments and random mosaics on the plane
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1973
%P 515-526
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a6/
%G ru
%F TVP_1973_18_3_a6
R. V. Ambartzumian. On random fields of segments and random mosaics on the plane. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 515-526. http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a6/