A sufficient condition for the number of zeros of a differentiable Gaussian stationary process to be finite
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 481-490
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We are concerned with factorial moments $N_m(T)$ of the number of zeros of a Gaussian stationary process $\xi_t$, $\mathbf M\xi_t=0$, $t\in[0,T]$. For $\xi_t$ having the derivative $\xi'_t$, a sufficient condition for moments $N_m(T)$ to be finite is obtained (Theorem 1). In theorems 2 and 3 we deal with applications of Theorem 1 to concrete classes of $\xi_t$.
			
            
            
            
          
        
      @article{TVP_1973_18_3_a3,
     author = {R. N. Miroshin},
     title = {A sufficient condition for the number of zeros of a differentiable {Gaussian} stationary process to be finite},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {481--490},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a3/}
}
                      
                      
                    TY - JOUR AU - R. N. Miroshin TI - A sufficient condition for the number of zeros of a differentiable Gaussian stationary process to be finite JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1973 SP - 481 EP - 490 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a3/ LA - ru ID - TVP_1973_18_3_a3 ER -
%0 Journal Article %A R. N. Miroshin %T A sufficient condition for the number of zeros of a differentiable Gaussian stationary process to be finite %J Teoriâ veroâtnostej i ee primeneniâ %D 1973 %P 481-490 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a3/ %G ru %F TVP_1973_18_3_a3
R. N. Miroshin. A sufficient condition for the number of zeros of a differentiable Gaussian stationary process to be finite. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 481-490. http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a3/
