On estimation of functionals of the probability density function and its derivatives
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 662-668
Cet article a éte moissonné depuis la source Math-Net.Ru
For functionals of the type $I=\int_{-\infty}^\infty H(f(y)),f'(y),\dots,f^{(r)}(y))\,dy$ the estimates $I_N=\int_{-k_N}^{k_N}H(f_N(y),\dots,f_N^{(r)}(y))\,dy$ are considered. Here $f_N(y),\dots,f_N^{(r)}(y)$ are nonparametric estimates of the density and of its derivatives introduced by Rosenblatt and studied by Parzen, Bhattacharya, Nadaraya and others. Theorems on convergence of the estimates with probability one are proved for Fisher's information, the entropy and the integral of the squared density. Convergence in probability are also investigated.
@article{TVP_1973_18_3_a26,
author = {Yu. G. Dmitriev and F. P. Tarasenko},
title = {On estimation of functionals of the probability density function and its derivatives},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {662--668},
year = {1973},
volume = {18},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a26/}
}
TY - JOUR AU - Yu. G. Dmitriev AU - F. P. Tarasenko TI - On estimation of functionals of the probability density function and its derivatives JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1973 SP - 662 EP - 668 VL - 18 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a26/ LA - ru ID - TVP_1973_18_3_a26 ER -
Yu. G. Dmitriev; F. P. Tarasenko. On estimation of functionals of the probability density function and its derivatives. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 662-668. http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a26/