On sample continuity of random fields
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 633-639
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Theorems 1 gives sufficient conditions for sample continuity of stochastic processes with multidimensional time parameter. Its proof uses a corollary of Sobolev's imbeding theorems, Theorem 2, and a technique of diodic expansions fairly common in proofs of sample continuity.
			
            
            
            
          
        
      @article{TVP_1973_18_3_a21,
     author = {V. V. Yurinskii},
     title = {On sample continuity of random fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {633--639},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a21/}
}
                      
                      
                    V. V. Yurinskii. On sample continuity of random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 633-639. http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a21/
