Conditions for convergence of the superposition of stochastic processes in J-topology
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 605-608
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\zeta_\varepsilon(t)$, $t\ge0$, and $\nu_\varepsilon(t)$, $t\in[0,T]$, Ьe right-continuous stochastic processes without discontinuities of the second kind. The paper investigates conditions of convergence in J-topology of the superposition of these processes, $\zeta_\varepsilon(\nu_\varepsilon(t))$, $t\in[0,T]$. In the case $\nu_\varepsilon(t)=t$, $t\in[0,T]$, with probability 1 these conditions coincide with well-known Skorohod's conditions of convergence of stochastic processes in J-topology. The results obtained are applied to processes of stepped sums of a random number of random variables.
@article{TVP_1973_18_3_a16,
author = {D. S. Sil'vestrov},
title = {Conditions for convergence of the superposition of stochastic processes in {J-topology}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {605--608},
year = {1973},
volume = {18},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a16/}
}
D. S. Sil'vestrov. Conditions for convergence of the superposition of stochastic processes in J-topology. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 605-608. http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a16/