On the moments of distributions attracted to stable laws
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 593-595
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following theorem is proved. Let the distribution function $F(x)$ belong to the domain of the normal attraction of a stable law with exponent $\alpha$, $0\alpha2$. If $\delta>0$ and $\psi(x)$ is an even function which is positive and nondecreasing on the half-line $x\ge\delta$, then convergence of the integral $\int_\delta^\infty\frac{dx}{x\psi(x)}$ is equivalent to convergence of the integral $\int_{|x|\ge\delta}\frac{|x|^\alpha\,dF(x)}{\psi(x)}$.
			
            
            
            
          
        
      @article{TVP_1973_18_3_a13,
     author = {V. V. Petrov},
     title = {On the moments of distributions attracted to stable laws},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {593--595},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a13/}
}
                      
                      
                    V. V. Petrov. On the moments of distributions attracted to stable laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 593-595. http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a13/
