Chi-square test for continuous distributions with location and scale parameters
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 583-591
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem of testing the hypothesis that the distribution function of independent equally distributed random variables is $G[(x-\theta_1)/\theta_2]$ is considered; $\theta_1$ and $\theta_2$ being unknown parameters. A statistic which is a modification of Pearson's $\chi^2$ is proposed whose limit distribution is chi-square with $(k-1)$ degrees of freedom, $k$ being the number of cells (it means that the number of degrees of freedom does not depend on the number of unknown parameters). In the statistic the maximum likelihood estimations of $\theta_1$ and $\theta_2$ based on the original observations are used. A similar result is obtained for the quantile test.
			
            
            
            
          
        
      @article{TVP_1973_18_3_a12,
     author = {M. S. Nikulin},
     title = {Chi-square test for continuous distributions with location and scale parameters},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {583--591},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a12/}
}
                      
                      
                    TY - JOUR AU - M. S. Nikulin TI - Chi-square test for continuous distributions with location and scale parameters JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1973 SP - 583 EP - 591 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a12/ LA - ru ID - TVP_1973_18_3_a12 ER -
M. S. Nikulin. Chi-square test for continuous distributions with location and scale parameters. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 583-591. http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a12/
