Variational series for the scheme of summing independent variables
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 557-570
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\xi_1,\dots,\xi_N$ be $N$ independent observations of a random variable $\xi$ and $\xi_{(m)}$ be the $m$th order statistic of this sample. We study the asymptotic behaviour of $\xi_{(m)}$ and $\xi_{(N-m+1)}$ when the distribution of $\xi$ is a convolution of $n$ identical distributions and $n,N\to\infty$.
			
            
            
            
          
        
      @article{TVP_1973_18_3_a10,
     author = {G. I. Ivchenko},
     title = {Variational series for the scheme of summing independent variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {557--570},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a10/}
}
                      
                      
                    G. I. Ivchenko. Variational series for the scheme of summing independent variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 557-570. http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a10/
