The limit theorems for some functionals of processes with independent increments
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 457-467
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper deals with asymptotical behaviour of the distribution of the functional $\frac1{D_T}\int_0^Th(S_t)\,dt$, where $S_t$ is a stochastic process with independent and stationary increments, $h(x)$ is a bounded function such that $$ \frac1{T^\beta}\int_0^Th(x)\,dx\to p,\quad\frac1{T^\beta}\int_{-T}^0h(x)\,dx\ge q,\quad T\to\infty,\quad0\le\beta\le1 $$ and $D_T$ is a normalizing factor.
@article{TVP_1973_18_3_a1,
author = {Yu. A. Davydov},
title = {The limit theorems for some functionals of processes with independent increments},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {457--467},
year = {1973},
volume = {18},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a1/}
}
Yu. A. Davydov. The limit theorems for some functionals of processes with independent increments. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 3, pp. 457-467. http://geodesic.mathdoc.fr/item/TVP_1973_18_3_a1/