An Asymptotic Expansion for a Class of Estimators Containing Maximum Likelihood Estimators
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 2, pp. 303-311
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_1,\dots,X_n$ be a sample from a distribution dependent on a parameter $\theta=(\theta_1,\dots,\theta_s)^T$ and $\vartheta_n=\vartheta_n(X_1,\dots,X_n)$ a minimum contrast estimator for $\theta$ corresponding to a contrast function $f(x,\theta)$ (see, e.g., [7], [8], [9]). When the $X_i$'s have a density $p(x,\theta)$ and $f(x,\theta)=-\log p(x,\theta), \vartheta$ is the maximum likelihood estimator. Among the regularity conditions, it is assumed that the continous derivatives $f^{\alpha}(x,\theta)=(d^{\alpha_1+\dots+\alpha_s}/d\theta_1^{\alpha_1}\dots d\theta_s^{\alpha_s})f(x,\theta)$ exist in a neighbourhood of the true value $\theta_0$ for all $\alpha$ with $\alpha_1+\dots+\alpha_s\le k+1$ and $E_{\theta_0}|f^{(\alpha)}(X,\theta_0)|^r\infty$ for some $r>2$. We obtain an expansion of the form
$$
\sqrt{n}(\vartheta_n-\theta_0)=h_1+n^{-1/2}h_2+\dots+n^{-(k-1)/2}h_k+\zeta_n
$$
where the components of $h_j, j=1,\ldots,k$, are polynomials dependent on some random variables of the form $n^{-1/2}\sum\limits_{i=1}^n f^{(\alpha)}(X_i,\theta_0)$ and $\zeta_n$ is a random variable converging to zero at a certain rate.
			
            
            
            
          
        
      @article{TVP_1973_18_2_a6,
     author = {D. M. Chibisov},
     title = {An {Asymptotic} {Expansion} for a {Class} of {Estimators} {Containing} {Maximum} {Likelihood} {Estimators}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {303--311},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_2_a6/}
}
                      
                      
                    TY - JOUR AU - D. M. Chibisov TI - An Asymptotic Expansion for a Class of Estimators Containing Maximum Likelihood Estimators JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1973 SP - 303 EP - 311 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1973_18_2_a6/ LA - ru ID - TVP_1973_18_2_a6 ER -
D. M. Chibisov. An Asymptotic Expansion for a Class of Estimators Containing Maximum Likelihood Estimators. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 2, pp. 303-311. http://geodesic.mathdoc.fr/item/TVP_1973_18_2_a6/
