Some Estimates for the Maximum Cumulative Sum of Independent Random Variables
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 2, pp. 402-405
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $S_n=\sum_{k=1}^n X_k$, $\overline{S}_n=\max_{1\ge k\le n} S_k$; $B_n^2=\sum_{k=1}^n \mathbf{D}X_k$,
$$
G(x)=\begin{cases}
\sqrt{\frac{2}{\pi}}\int_0^x e^{-t^2/2}dt (x\ge 0)\\
0 (x0)
\end{cases}, \quad
L_{n,p}=\frac{\sum_{k=1}^n \mathbf{E}|X_k|^p}{B_n^p} \quad (p>2).
$$
A sequence of independent symmetric random variables $\{X_n\}$ is constructed for which the estimste
$$
\sup_x|\mathbf{P}\{\overline{S}_n\}-G(x)|=o(L_{n,p}^{1/p})
$$
ails to hold.
			
            
            
            
          
        
      @article{TVP_1973_18_2_a22,
     author = {T. V. Arak and V. B. Nevzorov},
     title = {Some {Estimates} for the {Maximum} {Cumulative} {Sum} of {Independent} {Random} {Variables}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {402--405},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_2_a22/}
}
                      
                      
                    TY - JOUR AU - T. V. Arak AU - V. B. Nevzorov TI - Some Estimates for the Maximum Cumulative Sum of Independent Random Variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1973 SP - 402 EP - 405 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1973_18_2_a22/ LA - ru ID - TVP_1973_18_2_a22 ER -
T. V. Arak; V. B. Nevzorov. Some Estimates for the Maximum Cumulative Sum of Independent Random Variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 2, pp. 402-405. http://geodesic.mathdoc.fr/item/TVP_1973_18_2_a22/
