On a Multidimensional Version of the Kolmogorov Uniform Limit Theorem
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 2, pp. 396-402
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved, that, for any $k$, there exist such a constant $c(k)$, that for any distribution function $F=F(x)$ in $R^k$, one can find a sequence of the vectors $\{a_n\}$ for which
$$
\rho (F^n, E_{-na_{n}}\exp n (E_{a_n}F - E))(k)n^{-1/3}
$$
where $\rho (F,g)=\sup_x |F(x)-G(x)|$, $F^n$ is the $n$-time convolution of $F$ with itself and $E_a$ is the distribution function corresponding to the unit mass at $a$.
			
            
            
            
          
        
      @article{TVP_1973_18_2_a21,
     author = {E. L. Presman},
     title = {On a {Multidimensional} {Version} of the {Kolmogorov} {Uniform} {Limit} {Theorem}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {396--402},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_2_a21/}
}
                      
                      
                    E. L. Presman. On a Multidimensional Version of the Kolmogorov Uniform Limit Theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 2, pp. 396-402. http://geodesic.mathdoc.fr/item/TVP_1973_18_2_a21/
