On a Multidimensional Version of the Kolmogorov Uniform Limit Theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 2, pp. 396-402
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved, that, for any $k$, there exist such a constant $c(k)$, that for any distribution function $F=F(x)$ in $R^k$, one can find a sequence of the vectors $\{a_n\}$ for which $$ \rho (F^n, E_{-na_{n}}\exp n (E_{a_n}F - E))<c(k)n^{-1/3} $$ where $\rho (F,g)=\sup_x |F(x)-G(x)|$, $F^n$ is the $n$-time convolution of $F$ with itself and $E_a$ is the distribution function corresponding to the unit mass at $a$.
@article{TVP_1973_18_2_a21,
author = {E. L. Presman},
title = {On a {Multidimensional} {Version} of the {Kolmogorov} {Uniform} {Limit} {Theorem}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {396--402},
year = {1973},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_2_a21/}
}
E. L. Presman. On a Multidimensional Version of the Kolmogorov Uniform Limit Theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 2, pp. 396-402. http://geodesic.mathdoc.fr/item/TVP_1973_18_2_a21/