Some Asymptotic Expansions for an Incomplete Probability Integral
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 2, pp. 367-371

Voir la notice de l'article provenant de la source Math-Net.Ru

For the D. Owen function $$ T(h,a)=\frac{1}{2\pi}\int_0^a e^{-\frac{h^2}{2}(1+x^2)}\frac{dx}{1+x^2} $$ asymptotic expansions are derived in the cases 1) $h\to\infty$, $a\to 1$, 2) $h\to\infty$, $a\to 0$. Numerical computations by the formulas obtained are given. A correspondence between $T(h,a)$ and an incomplete probability integral is established.
@article{TVP_1973_18_2_a13,
     author = {P. Kouznetzoff and A. S. Yudina},
     title = {Some {Asymptotic} {Expansions} for an {Incomplete} {Probability} {Integral}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {367--371},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_2_a13/}
}
TY  - JOUR
AU  - P. Kouznetzoff
AU  - A. S. Yudina
TI  - Some Asymptotic Expansions for an Incomplete Probability Integral
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1973
SP  - 367
EP  - 371
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1973_18_2_a13/
LA  - ru
ID  - TVP_1973_18_2_a13
ER  - 
%0 Journal Article
%A P. Kouznetzoff
%A A. S. Yudina
%T Some Asymptotic Expansions for an Incomplete Probability Integral
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1973
%P 367-371
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1973_18_2_a13/
%G ru
%F TVP_1973_18_2_a13
P. Kouznetzoff; A. S. Yudina. Some Asymptotic Expansions for an Incomplete Probability Integral. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 2, pp. 367-371. http://geodesic.mathdoc.fr/item/TVP_1973_18_2_a13/