Some Asymptotic Expansions for an Incomplete Probability Integral
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 2, pp. 367-371
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For the D. Owen function
$$
T(h,a)=\frac{1}{2\pi}\int_0^a e^{-\frac{h^2}{2}(1+x^2)}\frac{dx}{1+x^2}
$$
asymptotic expansions are derived in the cases 1) $h\to\infty$, $a\to 1$, 2) $h\to\infty$, $a\to 0$. Numerical computations by the formulas obtained are given. A correspondence between $T(h,a)$ and an incomplete probability integral is established.
			
            
            
            
          
        
      @article{TVP_1973_18_2_a13,
     author = {P. Kouznetzoff and A. S. Yudina},
     title = {Some {Asymptotic} {Expansions} for an {Incomplete} {Probability} {Integral}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {367--371},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_2_a13/}
}
                      
                      
                    TY - JOUR AU - P. Kouznetzoff AU - A. S. Yudina TI - Some Asymptotic Expansions for an Incomplete Probability Integral JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1973 SP - 367 EP - 371 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1973_18_2_a13/ LA - ru ID - TVP_1973_18_2_a13 ER -
P. Kouznetzoff; A. S. Yudina. Some Asymptotic Expansions for an Incomplete Probability Integral. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 2, pp. 367-371. http://geodesic.mathdoc.fr/item/TVP_1973_18_2_a13/
