On strengthening of Lyapunov type estimates (the case when summands distributions are close to the normal one)
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 109-121

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{X_j\}_{j=1}^n$ be a sequence of independent random variables. Put \begin{gather*} \mathbf MX_j=0,\quad\mathbf MX_j^2=\sigma_j^2,\quad B^2=\sum_{j=1}^n\sigma_j^2,\quad C=\sum_{j=1}^n\sigma_j^3; \\ \nu_j=3\int_{-\infty}^\infty x^2|F_j(x)-\Phi(x/\sigma_j)|\,dx \end{gather*} where $F_j(x)=\mathbf P\{X_j$, $\Phi(x)=(2\pi)^{-1/2}\int_{-\infty}^xe^{u^2/2}\,du$. Let $$ \Lambda=\sum_{j=1}^n\nu_j,\quad\delta=\sup_x\biggl|\mathbf P\biggl\{\sum_{j=1}^nX_j\biggr\}-\Phi(x)\biggr|. $$ In the paper, some estimates of $\delta$ are obtained. The simpliest consequence from these estimates is the following: $$ \delta\le L\max\biggl\{\frac\Lambda{B^3};\biggl(\frac{\Lambda}{B^3}\biggr)^{1/4}\biggl(\frac C{B^3}\biggr)^{3/4}\biggr\} $$ where $L$ is an absolute constant.
@article{TVP_1973_18_1_a7,
     author = {S. V. Nagaev and V. I. Rotar'},
     title = {On strengthening of {Lyapunov} type estimates (the case when summands distributions are close to the normal one)},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {109--121},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a7/}
}
TY  - JOUR
AU  - S. V. Nagaev
AU  - V. I. Rotar'
TI  - On strengthening of Lyapunov type estimates (the case when summands distributions are close to the normal one)
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1973
SP  - 109
EP  - 121
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a7/
LA  - ru
ID  - TVP_1973_18_1_a7
ER  - 
%0 Journal Article
%A S. V. Nagaev
%A V. I. Rotar'
%T On strengthening of Lyapunov type estimates (the case when summands distributions are close to the normal one)
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1973
%P 109-121
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a7/
%G ru
%F TVP_1973_18_1_a7
S. V. Nagaev; V. I. Rotar'. On strengthening of Lyapunov type estimates (the case when summands distributions are close to the normal one). Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 109-121. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a7/