On strengthening of Lyapunov type estimates (the case when summands distributions are close to the normal one)
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 109-121
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\{X_j\}_{j=1}^n$ be a sequence of independent random variables. Put \begin{gather*} \mathbf MX_j=0,\quad\mathbf MX_j^2=\sigma_j^2,\quad B^2=\sum_{j=1}^n\sigma_j^2,\quad C=\sum_{j=1}^n\sigma_j^3; \\ \nu_j=3\int_{-\infty}^\infty x^2|F_j(x)-\Phi(x/\sigma_j)|\,dx \end{gather*} where $F_j(x)=\mathbf P\{X_j, $\Phi(x)=(2\pi)^{-1/2}\int_{-\infty}^xe^{u^2/2}\,du$. Let $$ \Lambda=\sum_{j=1}^n\nu_j,\quad\delta=\sup_x\biggl|\mathbf P\biggl\{\sum_{j=1}^nX_j<Bx\biggr\}-\Phi(x)\biggr|. $$ In the paper, some estimates of $\delta$ are obtained. The simpliest consequence from these estimates is the following: $$ \delta\le L\max\biggl\{\frac\Lambda{B^3};\biggl(\frac{\Lambda}{B^3}\biggr)^{1/4}\biggl(\frac C{B^3}\biggr)^{3/4}\biggr\} $$ where $L$ is an absolute constant.
@article{TVP_1973_18_1_a7,
author = {S. V. Nagaev and V. I. Rotar'},
title = {On strengthening of {Lyapunov} type estimates (the case when summands distributions are close to the normal one)},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {109--121},
year = {1973},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a7/}
}
TY - JOUR AU - S. V. Nagaev AU - V. I. Rotar' TI - On strengthening of Lyapunov type estimates (the case when summands distributions are close to the normal one) JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1973 SP - 109 EP - 121 VL - 18 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a7/ LA - ru ID - TVP_1973_18_1_a7 ER -
%0 Journal Article %A S. V. Nagaev %A V. I. Rotar' %T On strengthening of Lyapunov type estimates (the case when summands distributions are close to the normal one) %J Teoriâ veroâtnostej i ee primeneniâ %D 1973 %P 109-121 %V 18 %N 1 %U http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a7/ %G ru %F TVP_1973_18_1_a7
S. V. Nagaev; V. I. Rotar'. On strengthening of Lyapunov type estimates (the case when summands distributions are close to the normal one). Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 109-121. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a7/