Some estimates in the theory of stochastic integral
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 56-65
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, two estimates, (4) and (11), are proved. In (4), $x_t=\int_0^t\sigma_s\,d\xi_s+\int_0^tb_s\,ds$ here $\xi_s$ is an $n$-dimensional Wiener process, $b_s=k_s+\sigma_sh_s$, and $k_s$, $h_s$ satisfy the conditions a), б) ($dt=\det\sigma_t^2$). A particular case of (11) is (5).
			
            
            
            
          
        
      @article{TVP_1973_18_1_a3,
     author = {N. V. Krylov},
     title = {Some estimates in the theory of stochastic integral},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {56--65},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a3/}
}
                      
                      
                    N. V. Krylov. Some estimates in the theory of stochastic integral. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 56-65. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a3/
