Some estimates in the theory of stochastic integral
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 56-65

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, two estimates, (4) and (11), are proved. In (4), $x_t=\int_0^t\sigma_s\,d\xi_s+\int_0^tb_s\,ds$ here $\xi_s$ is an $n$-dimensional Wiener process, $b_s=k_s+\sigma_sh_s$, and $k_s$, $h_s$ satisfy the conditions a), б) ($dt=\det\sigma_t^2$). A particular case of (11) is (5).
@article{TVP_1973_18_1_a3,
     author = {N. V. Krylov},
     title = {Some estimates in the theory of stochastic integral},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {56--65},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a3/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - Some estimates in the theory of stochastic integral
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1973
SP  - 56
EP  - 65
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a3/
LA  - ru
ID  - TVP_1973_18_1_a3
ER  - 
%0 Journal Article
%A N. V. Krylov
%T Some estimates in the theory of stochastic integral
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1973
%P 56-65
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a3/
%G ru
%F TVP_1973_18_1_a3
N. V. Krylov. Some estimates in the theory of stochastic integral. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 56-65. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a3/