Experiment design for comparison of two normal population parameters
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 206-210
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Two normal population with parameters ($m_1$, $\sigma_1$) and ($m_2$, $\sigma_2$) are given, three pairs of alternative hypotheses being considered:
1) $H_0\colon m_1-m_2=0$, $H_1\colon m_1-m_2\ge\Delta$;
2) $H_0\colon m_1-m_2=0$, $H_1\colon|m_1-m_2|\ge\Delta$;
3) $H_0\colon\sigma_1^2/\sigma_2^2\le k$, $H_1\colon\sigma_1^2/\sigma_2^2\ge k(1+\Delta)$.
Given error probabilities of the first ($\alpha$) and the second kind ($\beta$), two-step procedures are constructed for the first two pairs of hypotheses which enable to determine how many extra observations are needed for the given procedures to have the strength ($\alpha$, $\beta$), the initial ($n_0$, $N_0$) observations being available. These tests have been obtained as a result of applying Stein's procedure to the Bartlette-Scheffe and Student's test.
For the third pair of hypotheses, an asymptotic formula is proposed for the number of observations necessary for Fisher's test to have a given strength ($\alpha$, $\beta$).
			
            
            
            
          
        
      @article{TVP_1973_18_1_a21,
     author = {I. N. Volodin},
     title = {Experiment design for comparison of two normal population parameters},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {206--210},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a21/}
}
                      
                      
                    I. N. Volodin. Experiment design for comparison of two normal population parameters. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 206-210. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a21/
