Experiment design for comparison of two normal population parameters
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 206-210
Cet article a éte moissonné depuis la source Math-Net.Ru
Two normal population with parameters ($m_1$, $\sigma_1$) and ($m_2$, $\sigma_2$) are given, three pairs of alternative hypotheses being considered: 1) $H_0\colon m_1-m_2=0$, $H_1\colon m_1-m_2\ge\Delta$; 2) $H_0\colon m_1-m_2=0$, $H_1\colon|m_1-m_2|\ge\Delta$; 3) $H_0\colon\sigma_1^2/\sigma_2^2\le k$, $H_1\colon\sigma_1^2/\sigma_2^2\ge k(1+\Delta)$. Given error probabilities of the first ($\alpha$) and the second kind ($\beta$), two-step procedures are constructed for the first two pairs of hypotheses which enable to determine how many extra observations are needed for the given procedures to have the strength ($\alpha$, $\beta$), the initial ($n_0$, $N_0$) observations being available. These tests have been obtained as a result of applying Stein's procedure to the Bartlette-Scheffe and Student's test. For the third pair of hypotheses, an asymptotic formula is proposed for the number of observations necessary for Fisher's test to have a given strength ($\alpha$, $\beta$).
@article{TVP_1973_18_1_a21,
author = {I. N. Volodin},
title = {Experiment design for comparison of two normal population parameters},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {206--210},
year = {1973},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a21/}
}
I. N. Volodin. Experiment design for comparison of two normal population parameters. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 206-210. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a21/