On property of ``waiting process''
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 203-206

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1,X_2,\dots$ be i.i.d. integer random variables with $-\infty\le\mathbf EX_10$ and $\mathbf P\{X_1>0\}>0$. Consider the process $W_t$, $t=0,1,\dots$, defined by formula: $$ W_0=0,\quad W_{t+1}=\max\{W_t+X_{t+1};0\}, $$ and its passage time $\tau(N)=\min\{t\colon W_t\ge N\}$, $N=1,2,\dots$. In this paper the existence of $\lim\sqrt[N]{\mathbf E\tau(N)}$ is proved, and its value is found.
@article{TVP_1973_18_1_a20,
     author = {V. A. Labkovskii},
     title = {On property of ``waiting process''},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {203--206},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a20/}
}
TY  - JOUR
AU  - V. A. Labkovskii
TI  - On property of ``waiting process''
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1973
SP  - 203
EP  - 206
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a20/
LA  - ru
ID  - TVP_1973_18_1_a20
ER  - 
%0 Journal Article
%A V. A. Labkovskii
%T On property of ``waiting process''
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1973
%P 203-206
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a20/
%G ru
%F TVP_1973_18_1_a20
V. A. Labkovskii. On property of ``waiting process''. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 203-206. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a20/