Diffusion approximation of non-Markov random walks on differentiable manifolds
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 44-55
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The present paper considers limit theorems for sequences of non-Markov random walks on a differentiable manifold of $C^3$-class. The result obtained is a generalization of the classic theorem for sums of dependent random variables (theorem 1). This theorem is applied then to investigation of some special random walks on a Lie group $\mathfrak G$ admitting the “polar” factorization $\mathfrak G=\mathfrak R\cdot\mathfrak U$ where $\mathfrak U$ is a compact subgroup of $\mathfrak G$. Similarly to the well-known method of N. N. Bogolyubov for differential equations with a small parameter, it may be called the principle of (compact) averaging for triangle systems of random elements on Lie groups.
			
            
            
            
          
        
      @article{TVP_1973_18_1_a2,
     author = {G. M. Sobko},
     title = {Diffusion approximation of {non-Markov} random walks on differentiable manifolds},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {44--55},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a2/}
}
                      
                      
                    G. M. Sobko. Diffusion approximation of non-Markov random walks on differentiable manifolds. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 44-55. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a2/
