On asymptotic behaviour of the degrees of vertices in a~random graph
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 195-203

Voir la notice de l'article provenant de la source Math-Net.Ru

A random non-oriented graph with $n$ vertices is considered, in which the edge between the $i$-th and the $j$-th vertices ($i,j=1,2,\dots,n$; $i\ne j$) exists with a probability $p$ independently of the other edges. The asymptotic behaviour of the minimum and maximum degrees of vertices as $n\to\infty$, $p=p(n)\to0$ is studied.
@article{TVP_1973_18_1_a19,
     author = {G. I. Ivchenko},
     title = {On asymptotic behaviour of the degrees of vertices in a~random graph},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {195--203},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a19/}
}
TY  - JOUR
AU  - G. I. Ivchenko
TI  - On asymptotic behaviour of the degrees of vertices in a~random graph
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1973
SP  - 195
EP  - 203
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a19/
LA  - ru
ID  - TVP_1973_18_1_a19
ER  - 
%0 Journal Article
%A G. I. Ivchenko
%T On asymptotic behaviour of the degrees of vertices in a~random graph
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1973
%P 195-203
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a19/
%G ru
%F TVP_1973_18_1_a19
G. I. Ivchenko. On asymptotic behaviour of the degrees of vertices in a~random graph. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 195-203. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a19/