On ergodicity of Gaussian homogeneous random fields on homogeneous spaces
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 177-180
Cet article a éte moissonné depuis la source Math-Net.Ru
A class of homogeneous spaces is found on which all Gaussian homogeneous fields without constant random component are ergodic. In particular, the Minkovsky space and Lobachevsky space belong to this class.
@article{TVP_1973_18_1_a15,
author = {A. A. Tempel'man},
title = {On ergodicity of {Gaussian} homogeneous random fields on homogeneous spaces},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {177--180},
year = {1973},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a15/}
}
A. A. Tempel'man. On ergodicity of Gaussian homogeneous random fields on homogeneous spaces. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 177-180. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a15/