On ergodicity of Gaussian homogeneous random fields on homogeneous spaces
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 177-180

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of homogeneous spaces is found on which all Gaussian homogeneous fields without constant random component are ergodic. In particular, the Minkovsky space and Lobachevsky space belong to this class.
@article{TVP_1973_18_1_a15,
     author = {A. A. Tempel'man},
     title = {On ergodicity of {Gaussian} homogeneous random fields on homogeneous spaces},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {177--180},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a15/}
}
TY  - JOUR
AU  - A. A. Tempel'man
TI  - On ergodicity of Gaussian homogeneous random fields on homogeneous spaces
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1973
SP  - 177
EP  - 180
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a15/
LA  - ru
ID  - TVP_1973_18_1_a15
ER  - 
%0 Journal Article
%A A. A. Tempel'man
%T On ergodicity of Gaussian homogeneous random fields on homogeneous spaces
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1973
%P 177-180
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a15/
%G ru
%F TVP_1973_18_1_a15
A. A. Tempel'man. On ergodicity of Gaussian homogeneous random fields on homogeneous spaces. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 177-180. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a15/