On ergodicity of Gaussian homogeneous random fields on homogeneous spaces
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 177-180
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A class of homogeneous spaces is found on which all Gaussian homogeneous fields without constant random component are ergodic. In particular, the Minkovsky space and Lobachevsky space belong to this class.
			
            
            
            
          
        
      @article{TVP_1973_18_1_a15,
     author = {A. A. Tempel'man},
     title = {On ergodicity of {Gaussian} homogeneous random fields on homogeneous spaces},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {177--180},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a15/}
}
                      
                      
                    A. A. Tempel'man. On ergodicity of Gaussian homogeneous random fields on homogeneous spaces. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 177-180. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a15/
