A probabilistic representation of the solution of the directional derivative problem
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 172-176
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mathbf A$ be аn elliptic differential operator of the second order in a domain $D$ of an $N$-dimentional Euclidean space; $l$ be a smooth vector field on the boundary. A probabilistic representation for the solution of the boundary value problem $Au=0$, $\partial u/dl|_{\partial D}=f$ is given in terms of the local time on the boundary. The central limit theorem is proved for a functional of the type of the local time on the boundary.
@article{TVP_1973_18_1_a14,
author = {A. P. Korostelev},
title = {A~probabilistic representation of the solution of the directional derivative problem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {172--176},
year = {1973},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a14/}
}
A. P. Korostelev. A probabilistic representation of the solution of the directional derivative problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 172-176. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a14/