A~probabilistic representation of the solution of the directional derivative problem
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 172-176
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\mathbf A$ be аn elliptic differential operator of the second order in a domain $D$ of an $N$-dimentional Euclidean space; $l$ be a smooth vector field on the boundary. A probabilistic representation for the solution of the boundary value problem $Au=0$, $\partial u/dl|_{\partial D}=f$ is given in terms of the local time on the boundary. The central limit theorem is proved for a functional of the type of the local time on the boundary.
			
            
            
            
          
        
      @article{TVP_1973_18_1_a14,
     author = {A. P. Korostelev},
     title = {A~probabilistic representation of the solution of the directional derivative problem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {172--176},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a14/}
}
                      
                      
                    TY - JOUR AU - A. P. Korostelev TI - A~probabilistic representation of the solution of the directional derivative problem JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1973 SP - 172 EP - 176 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a14/ LA - ru ID - TVP_1973_18_1_a14 ER -
A. P. Korostelev. A~probabilistic representation of the solution of the directional derivative problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 172-176. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a14/
