Boundary behaviour of conditional diffusion processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 160-163
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $G$ be a bounded domain in $R^n$ of class $A^{(2)}$ with the boundary $\Gamma$, and $x_t$ be a diffusion process in $G$ with absorption on $\Gamma$. Denote by $q(x,\gamma)$ the distribution density of the exit point of $x_t$ on $\Gamma$, and let $\widehat x_t$ be the conditional process given that $x_t$ is absorbed at a point $o$. In the paper, the behaviour of the function $q(x,o)$ as $x\to o$ and of the process $\widehat x_t$ near $o$ is studied.
@article{TVP_1973_18_1_a12,
author = {Yu. I. Kifer},
title = {Boundary behaviour of conditional diffusion processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {160--163},
year = {1973},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a12/}
}
Yu. I. Kifer. Boundary behaviour of conditional diffusion processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 160-163. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a12/