On canonical representations for stochastic processes of multiplicities one and two
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 155-160
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $x_1(t)$ and $x_2(t)$, $t\in R^1$, be orthogonal linearly regular stochastic processes of multiplicity one, and $x(t)=x_1(t)+x_2(t)$. The relation between the closed linear spans of the processes values, $H(x_1)$ and $H(x_2)$, and $H(x)$, is studied.
@article{TVP_1973_18_1_a11,
author = {T. N. Siraya},
title = {On canonical representations for stochastic processes of multiplicities one and two},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {155--160},
year = {1973},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a11/}
}
T. N. Siraya. On canonical representations for stochastic processes of multiplicities one and two. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 155-160. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a11/