О регулярности условных вероятностей для случайных процессов
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 151-155
Cet article a éte moissonné depuis la source Math-Net.Ru
Let ($\Omega$, $\mathscr N$, $\mathbf P$) be a probability space, where $\Omega$ is the set of all right-continuous functions with left-hand side limits or the set of all continuous functions with values in a semicompact. For any $\sigma$-field $\mathscr H\subset\mathscr N$, the existence and uniqueness of a regular conditional probability distribution of $\mathbf P$ given $\mathscr H$ is proved.
@article{TVP_1973_18_1_a10,
author = {N. V. Krylov},
title = {{\CYRO}~{\cyrr}{\cyre}{\cyrg}{\cyru}{\cyrl}{\cyrya}{\cyrr}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyru}{\cyrs}{\cyrl}{\cyro}{\cyrv}{\cyrn}{\cyrery}{\cyrh} {\cyrv}{\cyre}{\cyrr}{\cyro}{\cyrya}{\cyrt}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyre}{\cyrishrt} {\cyrd}{\cyrl}{\cyrya} {\cyrs}{\cyrl}{\cyru}{\cyrch}{\cyra}{\cyrishrt}{\cyrn}{\cyrery}{\cyrh} {\cyrp}{\cyrr}{\cyro}{\cyrc}{\cyre}{\cyrs}{\cyrs}{\cyro}{\cyrv}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {151--155},
year = {1973},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a10/}
}
N. V. Krylov. О регулярности условных вероятностей для случайных процессов. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 151-155. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a10/