О~регулярности условных вероятностей для случайных процессов
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 151-155

Voir la notice de l'article provenant de la source Math-Net.Ru

Let ($\Omega$, $\mathscr N$, $\mathbf P$) be a probability space, where $\Omega$ is the set of all right-continuous functions with left-hand side limits or the set of all continuous functions with values in a semicompact. For any $\sigma$-field $\mathscr H\subset\mathscr N$, the existence and uniqueness of a regular conditional probability distribution of $\mathbf P$ given $\mathscr H$ is proved.
@article{TVP_1973_18_1_a10,
     author = {N. V. Krylov},
     title = {{\CYRO}~{\cyrr}{\cyre}{\cyrg}{\cyru}{\cyrl}{\cyrya}{\cyrr}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyru}{\cyrs}{\cyrl}{\cyro}{\cyrv}{\cyrn}{\cyrery}{\cyrh} {\cyrv}{\cyre}{\cyrr}{\cyro}{\cyrya}{\cyrt}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyre}{\cyrishrt} {\cyrd}{\cyrl}{\cyrya} {\cyrs}{\cyrl}{\cyru}{\cyrch}{\cyra}{\cyrishrt}{\cyrn}{\cyrery}{\cyrh} {\cyrp}{\cyrr}{\cyro}{\cyrc}{\cyre}{\cyrs}{\cyrs}{\cyro}{\cyrv}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {151--155},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a10/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - О~регулярности условных вероятностей для случайных процессов
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1973
SP  - 151
EP  - 155
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a10/
LA  - ru
ID  - TVP_1973_18_1_a10
ER  - 
%0 Journal Article
%A N. V. Krylov
%T О~регулярности условных вероятностей для случайных процессов
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1973
%P 151-155
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a10/
%G ru
%F TVP_1973_18_1_a10
N. V. Krylov. О~регулярности условных вероятностей для случайных процессов. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 151-155. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a10/