On an extension of the class of stable distributions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 723-732
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\{\xi_n\}$ be a sequence of independent identically distributed random variables. Put
\begin{equation}
\eta_{nj}=\frac{1}{b_j}(\xi_1+\xi_2+\dots+\xi_{nj})\div a_j  
\tag{1}
\end{equation}
and assume that 
\begin{equation}
n_j{j+1}, \quad \lim_{j\to\infty}\frac{n_{j+1}}{n_j}=r\geq 1, \qquad r\infty. 
\tag{2}
\end{equation} In the paper, the class of limit distributions for the variables (1) under the conditions (2) is studied. This class is shown to possess some properties of the class of stable distributions. A general form of the spectral function of distributions from this class is given (Theorem 1).
			
            
            
            
          
        
      @article{TVP_1972_17_4_a9,
     author = {V. M. Kruglov},
     title = {On an extension of the class of stable distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {723--732},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a9/}
}
                      
                      
                    V. M. Kruglov. On an extension of the class of stable distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 723-732. http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a9/
