An asymptotic expansion for the distribution of a statistic admitting an asymptotic expansion
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 658-668
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathbf{X}_i$, $i=1,\dots,n$ be $p$-dimensional independent identically distributed random vectors and $\mathbf{S}_n=n^{-1/2}\sum\mathbf{X}_i$. Let $\mathbf{H}_0(\mathbf{x})$ be a linear function from $R^p$ into $R^s$, $s\leq p$, and $\mathbf{H}_j(\mathbf{x})=(H_{j1}(\mathbf{x}),\dots,H_{js}(\mathbf{x}))$, $j=1,\dots,k$, where $\mathbf{H}_{jl}(\mathbf{x})$, $\mathbf{x}\in R^p$, $l=1,\dots,s$, are polinomials. For the distribution of
\begin{equation}
\mathbf{Z}_n=\mathbf{H}_0(\mathbf{S}_n)+\sum_{j=1}^k n^{-j/2}\mathbf{H}_j(\mathbf{S}_n)
\tag{1}
\end{equation}
an asymptotic expansion of the Edgeworth type is obtained. A modification of this result is given for the case when the right hand side of (1) contains a remainder term converging to zero at a certain rate.
@article{TVP_1972_17_4_a3,
author = {D. M. Chibisov},
title = {An asymptotic expansion for the distribution of a statistic admitting an asymptotic expansion},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {658--668},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a3/}
}
TY - JOUR AU - D. M. Chibisov TI - An asymptotic expansion for the distribution of a statistic admitting an asymptotic expansion JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1972 SP - 658 EP - 668 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a3/ LA - ru ID - TVP_1972_17_4_a3 ER -
D. M. Chibisov. An asymptotic expansion for the distribution of a statistic admitting an asymptotic expansion. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 658-668. http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a3/